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Steady laminar free convection from a horizontal elliptic cylinder set in unbounded space is studied
numerically under the assumption of uniform surface temperature. A specifically developed computer-
code based on the SIMPLE-C algorithm is used for the solution of the mass, momentum and energy trans-
fer governing equations. Simulations are performed for ratios between the minor and major axes of the
elliptic cross-section of the cylinder in the range between 0.05 and 0.98, inclination angles of the major
axis of the elliptic cross-section with respect to gravity in the range between 0� and 90�, Rayleigh num-
bers based on the major axis of the elliptic cross-section in the range between 10 and 107, and Prandtl
numbers in the range between 0.7 and 700. It is found that the heat transfer rate increases with increas-
ing the Rayleigh and Prandtl numbers, while decreases with increasing the orientation angle of the cross-
section of the cylinder, i.e., passing from the slender to the blunt configuration. In addition, a noteworthy
fact is that in most cases the amount of heat exchanged at the cylinder surface has a peak at an optimum
axis ratio which is practically independent of the Prandtl number, while may either increase or decrease
with increasing the Rayleigh number depending on whether the orientation angle of the tube is above or
below a critical value of approximately 67.5�. Dimensionless correlating equations are proposed both for
the optimum axis ratio for maximum heat transfer and for the heat transfer rate from the cylinder surface
to the undisturbed surrounding fluid reservoir.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Free convection heat transfer from a horizontal cylinder to the
surrounding fluid reservoir is of great practical importance in
many engineering applications, as, e.g., high voltage power trans-
mission lines, solar collectors, electronic devices, nuclear safety
systems, and refrigeration condensers.

In the past decades, a considerable body of research has been
conducted for circular cylinders, analytically, numerically, and
experimentally, as clearly witnessed by the numerous data and
heat transfer correlations available in the literature.

Among the pioneers, in 1912 Langmuir [1] published the results
of extensive studies performed on free convection from thin wires
in gases. He concluded that the heat transfer rate could be evaluated
as the amount of heat conveyed by pure conduction through a film of
stationary fluid surrounding the wire, which is the basic formulation
of the so-called film theory. In 1954 McAdams [2] correlated many
experimental data obtained by other workers for Rayleigh numbers
in the range between 10�4 and 109. Correlating-equations based on
existing experimental data across even wider ranges of the Rayleigh
number were successively developed by Morgan [3], Churchill and
ll rights reserved.
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Chu [4], and Kuehn and Goldstein [5]. Experiments were executed
by Kutateladze [6], Pera and Gebhart [7], Hesse and Sparrow [8],
Fand et al. [9], and Clemes et al. [10]. Analytical studies based on
the boundary-layer approximation were conducted by Hermann
[11], Chiang and Kaye [12], Saville and Churchill [13], Elliot [14],
Merkin [15], and Muntasser and Mulligan [16]. Numerical solutions
of the governing Navier–Stokes and energy equations were obtained
by Kuehn and Goldstein [17], Farouk and Guceri [18], Badr [19],
Wang et al. [20], and Saitoh et al. [21].

Investigations on free convection from horizontal cylinders of
non-circular cross-section started in the early seventies, focusing
a special attention upon the elliptic shape, mainly because it covers
a wide extent of geometries which range between the two limiting
cases of a flat plate and a circular cylinder.

The earliest work on this topic was performed by Lin and Chao
[22], who employed a suitable coordinate transformation to solve
the boundary-layer equations for two-dimensional and axisym-
metric bodies of arbitrary contour in terms of series solutions. Lo-
cal heat transfer results over horizontal elliptic cylinders were
obtained for values of the ratio between the minor and major axes
of the elliptic cross-section from 0.25 to 1, in both cases of slender
and blunt orientations, i.e., with the major axis either vertical or
horizontal, respectively, and for Prandtl numbers in the range be-
tween 0.72 and 1. For circular and slender elliptic cylinders, it
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Nomenclature

a major axis of the elliptic cross-section of the cylinder
b minor axis of the elliptic cross-section of the cylinder
g gravity vector
g gravitational acceleration
k thermal conductivity of the fluid
L dimensionless focal length of the elliptic cross-section

of the cylinder
Nu average Nusselt number
Nu(g) local Nusselt number
P perimeter of the elliptic cross-section of the cylinder
p dimensionless pressure
Pr Prandtl number = m/a
Q heat transfer rate
q heat flux
Ra Rayleigh number based on the major axis of the elliptic

cross-section of the cylinder = gb(tw � t1)a3/am
T dimensionless temperature
t temperature
U dimensionless radial velocity component
V dimensionless velocity vector
V dimensionless tangential velocity component
X dimensionless Cartesian coordinate parallel to the ma-

jor axis of the elliptic cross-section of the cylinder
x Cartesian coordinate parallel to the major axis of the

elliptic cross-section of the cylinder

Y dimensionless Cartesian coordinate parallel to the min-
or axis of the elliptic cross-section of the cylinder

y Cartesian coordinate parallel to the minor axis of the
elliptic cross-section of the cylinder

Greek symbols
a thermal diffusivity of the fluid
b coefficient of volumetric thermal expansion of the fluid
g dimensionless elliptic polar coordinate
u inclination angle of the major axis of the elliptic cross-

section of the cylinder with respect to gravity
m kinematic viscosity of the fluid
q density of the fluid
n dimensionless elliptic radial coordinate
n0 n-coordinate for the cylinder surface

Subscripts
c referred to the circular cylinder
opt optimum value
w referred to the cylinder surface
0 referred to the vertical setting of the elliptic cross-sec-

tion of the cylinder
90 referred to the horizontal setting of the elliptic cross-

section of the cylinder
1 referred to the undisturbed fluid
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was found that the local Nusselt number has a maximum at the
forward stagnation point, and decreases continuously as one
moves downstream along the cylinder surface. In contrast, for
blunt elliptic cylinders, the local Nusselt number increases as one
moves away from the forward stagnation point, reaches a maxi-
mum at a location which corresponds to an eccentric angle of
approximately 86�, and then decreases progressively up to the
plume region. As regards the effect of the axis ratio, i.e., the ratio
between the minor and major axes of the cylinder, on the overall
heat transfer performance, the results reported in the paper show
that, depending on whether the major axis of the cylinder is verti-
cal or horizontal, the average Nusselt number increases or de-
creases with decreasing the axis ratio. In addition, of interest is
the fact that, for slender orientations, the local value of the ratio
Nu/Ra0.25 is practically independent of the axis ratio for x/a > 0.2,
where x is the distance from the lower stagnation point measured
along the cylinder surface and a is the length of the major axis of
the elliptic cross-section.

Raithby and Hollands [23], following the film theory of Lang-
muir, proposed an approximate procedure for the prediction of
the amount of heat exchanged by free convection at the surface
of slender elliptic cylinders over a wide range of the Rayleigh
number, with a vertical plate and a circular cylinder as special
cases. Their method, developed to overcome most of the limits
of applicability typical of the thin-layer analysis, consisted in a
modification of the solutions of the boundary-layer equations,
introduced in order to account for both the effect of thick bound-
ary layers at low Rayleigh numbers and the influence of turbu-
lence at higher Rayleigh numbers. Its application was based on
the calculation of the local thickness of the stationary fluid layer
of variable thickness surrounding the body, and the subsequent
solution for the conduction heat transfer across this so-called
conduction layer. The results obtained for the elliptic cylinder
were in a substantial good agreement with the Lin–Chao calcula-
tions. The Raithby–Hollands method was then simplified by Has-
sani [24], who replaced the conduction layer of variable thickness
with a conduction layer of uniform thickness, and, at same time,
extended its application to asymmetric horizontal cylinders of
any convex cross-section. Indeed, for the case of elliptic cylinders
with major axis neither vertical nor horizontal, the Hassani meth-
od is not an easy-to-apply method, since the calculation of the
vertical height of the cylinder cross-section, required for the eval-
uation of the characteristic length in the Nusselt and Rayleigh
numbers, is not immediate at all, which represents a limitation
to its practical use.

The thin-layer approach was used also by Merkin [25], who
wrote the boundary-layer equations in finite-difference form and
solved them iteratively by the Newton–Raphson method. Local
and average heat transfer results of the same type of those derived
by previous workers were obtained for both slender and blunt ori-
entations, under the assumption of either uniform surface temper-
ature or uniform heat flux, for Pr = 1 and values of the axis ratio
from 0.25 to 1. In accordance with the Lin–Chao results, it was
found that for isothermal cylinders the slender orientation gives
a higher average heat transfer to the fluid than the blunt orienta-
tion for the same value of the axis ratio and Rayleigh number.
Recently, Cheng [26], following the work by Merkin, proposed a
boundary-layer study in which he evaluated the effects of a tem-
perature-dependent viscosity on both the heat transfer rate and
the skin-friction.

The first well-documented experimental study on free convec-
tion from horizontal elliptic cylinders was conducted in 1984 by
Huang and Mayinger [27], who performed interferometric mea-
surements of the local and average heat transfer coefficients in
air for axis ratios in the range between 0.364 and 0.667, Grashof
numbers in the range between 4.5 � 104 and 3.77 � 105, and dif-
ferent orientations between the slender and blunt configurations.
Among the several results obtained, it was observed that, as the
inclination of the elliptic cross-section increases passing from the
horizontal to the vertical setting of the major axis, the average Nus-
selt number of the cylinders with lower axis ratio increases much
more than that for the cylinders with higher axis ratio. For the axi-
symmetric slender and blunt configurations, a heat correlation was
also proposed.



Fig. 1. Sketch of the tube geometry.
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Numerical solutions of the full conservation equations of mass,
momentum and energy were derived by Badr and Shamsher [28]
for a slender elliptic cylinder suspended in air, for different values
of the Rayleigh number in the range between 10�2 and 103, and the
axis ratio in the range between 0.1 and 0.964. It was found that for
thin geometries, i.e., for axis ratios lower than 0.5, the minimum
for the local value of the Nusselt number does not occur at the rear
stagnation point, but at the sides of the elliptic cross-section; the
lower is the Rayleigh number, the more the minimum for Nu is lo-
cated toward the forward stagnation point (for an axis ratio of 0.5
and Ra = 10�2, the minimum for Nu is reported to occur at approx-
imately the endpoints of the horizontal minor axis of the cylinder
cross-section).

Chen and Wang [29] performed a finite-difference numerical
study for Pr = 0.7, Rayleigh numbers in the range between 102

and 106, axis ratios in the range between 0.25 and 1, and incli-
nation angles in the range between 0� and 90�. Some experimen-
tal measurements based on holographic interferometry were
carried out for two different elliptic tubes with axis ratios of
0.34 and 0.56, and for a circular cylinder, and used for valida-
tion. For the axisymmetric slender and blunt configurations, cor-
relating equations for the average Nusselt number were
developed.

Badr [30] conducted a numerical investigation of the transient
natural convection from a horizontal elliptic tube in free air sub-
jected to a sudden increase of its surface temperature, for axis
ratios of 0.4, 0.6, 0.8, and 0.98, and orientation angles of 0�,
30�, 60�, and 90�, at the two Rayleigh numbers of 103 and 104.
An interesting phenomenon reported is that at steady-state the
maximum for the local Nusselt number occurs always at approx-
imately the lower end of the major axis of the tube cross-sec-
tion, regardless of the tube orientation. This extends what was
already known for the slender configuration, in which the max-
imum for Nu occurs at the lowest point of the tube surface, i.e.,
the forward stagnation point, and for the blunt configuration, in
which the maximum for Nu occurs at approximately the two
endpoints of the horizontal major axis of the tube cross-section.
In addition, it is worth mentioning that for the blunt configura-
tion, at Ra = 104, a smooth maximum for the average Nusselt
number was reported for the axis ratio of 0.6. Indeed, the author
did not give importance to this, probably because of the lack of
data available.

Works on the case of uniform heat flux were also conducted.
Mahfouz and Kocabiyik [31] performed a numerical study of the
transient buoyancy driven flow adjacent to a cylinder of elliptic
cross-section with major axis horizontal, whose surface is subjected
to a sudden uniform heat flux, for different values of the axis ratio in
the range between 0.05 and 0.998, the modified Rayleigh number in
the range between 103 and 107, and the Prandtl number in the range
between 0.1 and 10. Elsayed et al. [32] executed experimental mea-
surements in air on a single tube with a 0.555 axis ratio, for different
values of the heat-flux-based Rayleigh number in the range between
1.1 � 107 and 8 � 107, and orientation angles in the range between
0� and 90�. In both papers, results consistent with data from prior
researchers were reported.

The above review of the existing literature shows that numer-
ous physical aspects of the problem have been studied and cleared,
but only few workers have considered small axis ratios and inclina-
tions of the elliptic cross-section different from the slender or the
blunt orientations. In addition, most of the researchers have fo-
cused on relatively narrow ranges of the Rayleigh number, and
on air as working fluid. Finally, only two authors proposed heat
transfer correlations, which, in both cases, are related to only axi-
symmetric configurations.

In this background, the aim of the present paper is to carry
out a numerical analysis of free convection from a horizontal
tube of elliptic cross-section with isothermal surface, so as to de-
rive heat transfer correlating equations spanning across suffi-
ciently wide ranges of the independent variables to be of help
in applications. The study is performed under the assumption
of steady laminar flow, for axis ratios in the range between
0.05 and 0.98, orientation angles in the range between 0� (which
corresponds to the slender configuration) and 90� (which corre-
sponds to the blunt configuration), Rayleigh numbers in the
range between 10 and 107, and Prandtl numbers in the range be-
tween 0.7 and 700.

2. Mathematical formulation

A horizontal cylinder of elliptic cross-section with major axis a
and minor axis b is considered. The major axis is inclined an angle
u with respect to the gravity vector, as depicted in Fig. 1, in which a
reference Cartesian system (x,y) is also represented. Free convec-
tion heat transfer occurs between the cylinder surface, kept at uni-
form temperature tw, and the surrounding undisturbed fluid
reservoir, assumed at uniform temperature t1.

The buoyancy-induced flow is considered to be steady and
laminar. The cylinder is assumed to be much longer than the
major axis, which implies that the end effects can be reasonably
neglected and the temperature and velocity fields can be consid-
ered two-dimensional. The flow is assumed to be incompress-
ible, with constant fluid properties and negligible viscous
dissipation and pressure work. The buoyancy effects on momen-
tum transfer are taken into account through the Boussinesq
approximation.

Once the above assumptions are employed in the conservation
equations of mass, momentum, and energy, the following set of
dimensionless governing equations is obtained:

r � V ¼ 0 ð1Þ

ðV � rÞV ¼ �rpþr2V � Ra
Pr

T
g
g

ð2Þ

ðV � rÞT ¼ 1
Pr
r2T ð3Þ

where V is the velocity vector having dimensionless velocity com-
ponents U and V normalized with m/a, T is the dimensionless tem-
perature excess over the uniform temperature of the undisturbed
fluid reservoir normalized with the temperature difference
(tw � t1), p is the dimensionless pressure normalized with
q1m2/a2, Ra = gb(tw � t1)a3/am is the Rayleigh number based on
the major axis of the elliptic cross-section, g is the gravity vector,
and Pr = m/a is the Prandtl number.
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The related boundary conditions are T = 1 and V = 0 on the cyl-
inder surface, and T = 0 and V = 0 at very large distance from the
cylinder.

In order to work with coordinates appropriate to the tube
geometry, a dimensionless elliptic coordinate system (n,g) is de-
fined by the following transformations:

X ¼ L cosh n cos g ð4Þ
Y ¼ L sinh n sing ð5Þ

where X and Y are the dimensionless Cartesian coordinates normal-
ized with a, and L is the dimensionless focal length equal to
[1 � (b/a)2]0.5/2. In the (n,g) system, the n-constant lines are confo-
cal ellipses with n P n0, where n0 is the n-coordinate for the cylinder
surface, while the g-constant lines are confocal hyperbolae with
g 2 [0,2p), as shown in Fig. 2. In this reference system, U is the ra-
dial velocity component, i.e., the component of V directed along the
n-coordinate, and V is the tangential velocity component, i.e., the
component of V directed along the g-coordinate. The value of n0

is given by:

n0 ¼ ln
1þ ðb=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb=aÞ2

q ð6Þ

The two-dimensional integration domain is assumed to extend
up to a distance nD from the cylinder surface sufficiently large to
represent the so-called outer boundary. At such distance the fluid
may reasonably be assumed to enter or leave the integration
flow-domain in the direction normal to the confocal ellipse with
n = nD. The entering fluid is assumed at the undisturbed free field
temperature. As regards the leaving fluid, whose temperature is
not known a priori, a zero temperature gradient normal to the
elliptic outer boundary is assumed, thus implying that the local
heat transfer is dominated by convection rather than by conduc-
tion, provided that the outflow velocity is sufficiently high.

The following boundary conditions are then applied:

(a) at the cylinder surface, i.e., n = n0 and 0 6 g < 2p:

U ¼ 0; V ¼ 0; T ¼ 1 ð7Þ

(b) at the outer boundary of the computational domain, i.e.,
n = nD and 0 6 g < 2p:

oU
on
¼ 0; V ¼ 0; T ¼ 0 if U 6 0 or

oT
on
¼ 0 if U > 0

ð8Þ
Fig. 2. Elliptic coordinate system.
3. Solution procedure
The set of governing equations (1)–(3) with the boundary con-
ditions (7) and (8) is solved through a control-volume formulation
of the finite-difference method. The pressure-velocity coupling is
handled by the SIMPLE-C algorithm by Van Doormaal and Raithby
[33], which is essentially a more implicit variant of the SIMPLE
algorithm by Patankar and Spalding [34]. The advection fluxes
are evaluated through the QUICK discretization scheme by Leonard
[35]. Details on the SIMPLE procedure are widely available and well
referenced in the literature (see, e.g., Patankar [36,37]).

A fine uniform mesh-spacing is used for the discretization in the
g-direction, i.e., along the cylinder surface. In contrast, a variable
spacing is used for the n-direction, providing for a concentration
of grid lines near the cylinder surface and a relatively coarser res-
olution toward the outer boundary of the integration domain.
Starting from assigned first-approximation fields of the dependent
variables, the discretized governing equations are solved itera-
tively through a line-by-line application of the Thomas algorithm,
enforcing under-relaxation to ensure convergence. The solution is
considered to be fully converged when the maximum absolute
values of both the mass source and the percentage changes of
the dependent variables at any grid-node from iteration to itera-
tion are smaller than the prescribed values, i.e., 10�5 and 10�6,
respectively.

After convergence is attained, the local and average Nusselt
numbers Nu(g) and Nu are calculated:
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NuðgÞ ¼ qa
kðtw � t1Þ

¼ �oT
on

����
n¼n0

ð9Þ

Nu ¼ Qa
kPðtw � t1Þ

¼ � 1
2p

Z 2p

0

oT
on

����
n¼n0

dg ð10Þ

where q is the heat flux, Q is the heat transfer rate, P is the perim-
eter of the elliptic cross-section (which may be calculated through
the Ramanujan’s approximation [38]), and the temperature gradi-
ents at the cylinder surface are evaluated through a second-order
profile among each wall-node and the next two corresponding
fluid-nodes.

Tests on the dependence of the results obtained on the mesh-
spacing, and on the extent of the integration domain, have been
performed for several combinations of values of b/a, u, Ra, and
Pr. The optimal grid-size values, as well as the optimal position
of the elliptic outer boundary used for computations, are such that
further grid refinements or boundary displacements do not yield
any noticeable modification neither in the heat transfer rates nor
in the flow field, that is, the percentage changes of Nu(g) and Nu,
and the percentage changes of the maximum value of the tangen-
tial velocity component at g = (90� + u) and (270� + u), are smaller
than the prescribed accuracy values, i.e., 0.5% and 1%, respectively.
Typical features of the integration flow-domain may be summa-
rized as follows: (a) the number of nodal points (n � g) lies in
the range between 54 � 86 and 162 � 258, and (b) the major axis
of the elliptic outer boundary of the computational domain varies
between 4 and 20 times the major axis of the elliptic cross-section
of the cylinder, depending on the Rayleigh and Prandtl numbers,
the axis ratio, and the tilting angle. As far as the validation of the
numerical code and the discretization grid system is concerned,
the local Nusselt numbers Nu(g) obtained from simulations per-
formed for Pr = 0.7 are compared with: (a) the experimental data
of Huang and Mayinger [27] for Ra = 2 � 105, b/a = 0.667, and
u = 0� and 90�, as reported in Figs. 3 and 4; (b) the numerical re-
sults of Badr and Shamsher [28] for Ra = 10, b/a = 0.5, and u = 0�,
as reported in Fig. 5; and (c) the numerical results of Badr [30]
for Ra = 103, b/a = 0.6, and u = 30� and 60�, as reported in Figs. 6



Fig. 3. Comparison between the present local results for Pr = 0.7, Ra = 2 � 105,
b/a = 0.667, and u = 0�, and the experimental data by Huang and Mayinger [27].

Fig. 4. Comparison between the present local results for Pr = 0.7, Ra = 2 � 105,
b/a = 0.667, and u = 90�, and the experimental data by Huang and Mayinger [27].

Fig. 5. Comparison between the present local results for Pr = 0.7, Ra = 10, b/a = 0.5,
and u = 0�, and the numerical data by Badr and Shamsher [28].

Fig. 6. Comparison between the present local results for Pr = 0.7, Ra = 103, b/a = 0.6,
and u = 30�, and the numerical data by Badr [30].

Fig. 7. Comparison between the present local results for Pr = 0.7, Ra = 103, b/a = 0.6,
and u = 60�, and the numerical data by Badr [30].
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and 7. The results obtained for the average Nusselt number Nu are
then compared with: (a) the numerical results of Badr [30] for
Pr = 0.7, b/a = 0.4–0.98, u = 0� and 90�, and Ra = 103 and 104, as re-
ported in Table 1; (b) the numerical results of Badr [30] for Pr = 0.7,
b/a = 0.6, u = 0–90�, and Ra = 103 and 104, as reported in Table 2;
and (c) the analytical results of Raithby and Hollands [23] for
u = 0�, b/a = 0.2–0.98, Pr = 0.7–70, and Ra = 104 to 106, as reported
in Table 3. An overall good degree of agreement between the pres-
ent results and the literature data may be observed for both the
local and the average Nusselt numbers, with percentage differ-
ences which in most cases do not exceed 1%. An exception is rep-
resented by the over-predictions of the Raithby–Hollands
equation, whose average percentage order is 2.5%, with a few peaks
of the order of 5–7%. However, these over-predictions were ex-
pected. In fact, the Raithby–Hollands correlation is based on
boundary-layer solutions, and thus, even if these solutions were
suitably improved by including the influence of the surface curva-
ture, in some situations this correlation cannot take into full ac-
count the insulating effect of the flow separation from the
cylinder surface.

4. Results and discussion

Numerical simulations are performed for different values of (a)
the axis ratio b/a in the range between 0.05 and 0.98, (b) the orien-
tation angle of the elliptic cross-section, u, in the range between 0�
(which corresponds to the slender configuration) and 90� (which
corresponds to the blunt configuration), (c) the Rayleigh number
based on the major axis, Ra, in the range between 10 and 107,
and (d) the Prandtl number, Pr, in the range between 0.7 and 700.



Table 1
Comparison of the present solutions for the average Nusselt number with the
numerical results of Badr [30] for slender and blunt elliptic cross-sections

Pr = 0.7 Nu

Ra b/a u = 0� u = 90�

Badr [30] Present work Badr [30] Present work

103 0.4 3.59 3.54 3.20 3.15
0.6 3.44 3.37 3.16 3.14
0.8 3.23 3.19 3.11 3.09
0.98 3.09 3.03 –

104 0.4 5.91 5.69 4.90 4.89
0.6 5.63 5.40 4.96 4.94
0.8 5.36 5.11 4.93 4.90
0.98 5.05 4.85 –

Table 2
Comparison of the present solutions for the average Nusselt number with the
numerical results of Badr [30] for inclined elliptic cross-sections

Pr = 0.7, b/a = 0.6 Nu

Ra u (�) Badr [30] Present work

103 0 3.44 3.37
30 3.35 3.33
60 3.23 3.22
90 3.16 3.14

104 0 5.63 5.40
30 5.34 5.32
60 5.11 5.09
90 4.96 4.94
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As said in Section 1, one of the main objectives of the present
study is to develop dimensionless correlations useful in applica-
tions to heat transfer designers and constructors. To this end, what
counts is not only to generate a numerous set of data across suffi-
ciently wide ranges of the independent variables, but also to iden-
tify an adequate expression for such correlations, which must be
suitable to take into proper account the varying dependence of
the Nusselt number on any independent variable. In this perspec-
tive, the data analysis must point out both the general physical as-
pects of the transport phenomena investigated and all the features
pertaining to the mathematical aspects of the results, that can give
a further help to define a functional structure able to fit the heat
transfer data as best as possible.

The present discussion of the results is then arranged in three
distinct sections: the data obtained for Pr = 0.7, which corresponds
to air, are reported and discussed first, in order to stress the effects
Table 3
Comparison of the present solutions for the average Nusselt number with the data derived

u = 0� Nu

Ra b/a Pr = 0.7 Pr = 7

R–H equation [23] Present work R–H equa

104 0.2 6.27 5.89 7.24
0.4 5.95 5.69 6.87
0.6 5.59 5.40 6.45
0.8 5.25 5.11 6.07
0.98 4.96 4.85 5.73

105 0.2 10.19 9.85 11.89
0.4 9.70 9.45 11.31
0.6 9.18 8.95 10.69
0.8 8.71 8.44 10.14
0.98 8.31 8.02 9.66

106 0.2 17.16 16.83 20.17
0.4 16.47 16.10 19.31
0.6 15.77 15.20 18.43
0.8 15.18 14.34 17.68
0.98 14.68 13.63 17.04
of the orientation angle, axis ratio and Rayleigh number on the
overall thermal performance of the elliptic cylinder; subsequently,
emphasis is given to the effects of the Prandtl number; finally, a set
of dimensionless heat transfer correlating equations is proposed.
4.1. Heat transfer in air (Pr = 0.7)

The effects of both the axis ratio b/a and the orientation angle u
on the average heat transfer rate from an elliptic cylinder sus-
pended in free air are pointed out in Figs. 8–11, where some repre-
sentative results are reported for Ra = 10, 103, 105, and 107,
respectively. The ordinate of each diagram is the ratio Nu/Nuc be-
tween the average Nusselt numbers for the elliptic cylinder and
for the circular cylinder at same Rayleigh number, so as to high-
light in what measure the shape and orientation of the cross-sec-
tion of the cylinder either enhance or degrade its heat transfer
performance relative to that of a circular tube – the Nusselt num-
ber of the circular cylinder for 101

6 Ra 6 107 can be evaluated
through the binomial correlation Nuc = 0.701 + 0.411Ra0.25, see
Ref. [39].

It may be seen that for orientation angles below 60�, an
enhancement of the order of 10–25% is the rule at any Rayleigh
number investigated. In contrast, for larger inclinations the heat
transfer performance may decrease, with a degree of degradation
which increases with increasing both Ra and b/a.

In addition, it is worth pointing out that the amount of heat ex-
changed at the cylinder surface decreases as the orientation angle
increases, which is due to the widening of the regions of the front
and rear stagnation points. In particular, such degradation of the
Nusselt number occurs at a rate which increases as the Rayleigh
number increases and the axis ratio decreases. This may be ex-
plained by considering that the enlargements of the stagnation re-
gions cited above become proportionally more significant with
increasing Ra and decreasing b/a, as clearly reflected by the iso-
therm patterns plotted in Fig. 12, for b/a = 0.5, u = 0�, 45�, and
90�, and Ra = 102, 104, and 106, and in Fig. 13, for Ra = 104, u = 0�,
45�, and 90�, and b/a = 0.2, 0.5, and 0.8. An overview of the effects
of both Ra and b/a on the rate of the decrease of the heat transfer
performance, which occurs as the orientation angle u passes from
0� to 90�, is presented in Fig. 14, where the distributions of the ra-
tio Nu90/Nu0 between the average Nusselt numbers for the hori-
zontal setting (u = 90�) and for the vertical setting (u = 0�) of the
elliptic cross-section at same Rayleigh number and axis ratio, are
plotted vs. Ra for different values of b/a in the range between
0.05 and 0.98.
from the Raithby–Hollands correlating equation [23] for slender elliptic cross-sections

Pr = 70

tion [23] Present work R–H equation [23] Present work

6.87 7.63 7.52
6.63 7.24 7.22
6.30 6.80 6.83
5.95 6.39 6.44
5.67 6.03 6.11

11.52 12.59 12.43
11.06 11.96 11.93
10.50 11.30 11.30

9.92 10.69 10.66
9.45 10.17 10.15

19.77 21.39 21.18
18.94 20.43 20.30
17.93 19.45 19.23
16.94 18.60 18.18
16.13 17.87 17.29



Fig. 8. Distributions of the ratio Nu/Nuc vs. b/a for Pr = 0.7, Ra = 10 and different
values of u.

Fig. 9. Distributions of the ratio Nu/Nuc vs. b/a for Pr = 0.7, Ra = 103 and different
values of u.

Fig. 10. Distributions of the ratio Nu/Nuc vs. b/a for Pr = 0.7, Ra = 105 and different
values of u.

Fig. 11. Distributions of the ratio Nu/Nuc vs. b/a for Pr = 0.7, Ra = 107 and different
values of u.

M. Corcione, E. Habib / International Journal of Heat and Mass Transfer 52 (2009) 1353–1364 1359
A further noteworthy fact is that in most cases the average Nus-
selt number has a peak at an optimum axis ratio (b/a)opt, whose
distributions vs. the orientation angle u for different Rayleigh
numbers are reported in Fig. 15. It may be observed that such opti-
mum axis ratio may either increase or decrease with increasing the
Rayleigh number, depending on whether the orientation angle is
larger or smaller than a ‘‘critical” value u* ffi 67.5� at which
(b/a)opt is approximately 0.33, independently of the Rayleigh
number.

Finally, as expected, the Nusselt number increases with increas-
ing the Rayleigh number, which is due to the buoyancy increase. In
particular, the increase of Nu with Ra occurs with a slope which de-
creases or increases with increasing the axis ratio, depending on
whether the tube configuration is either slender or blunt.

4.2. Heat transfer in liquids (0.7 < Pr 6 700)

The effects of the Prandtl number on the heat transfer rate at
the cylinder surface are pointed out in Fig. 16, where the distribu-
tions of Nu vs. Ra for b/a = 0.5 and u = 45� are reported for different
Prandtl numbers, and in Figs. 17 and 18, where the distributions of
Nu vs. b/a for Ra = 104, and different Prandtl numbers, are reported
for u = 15� and u = 75�, respectively (in all the figures the Nu-distri-
butions for Pr = 0.7 are also represented for comparison).

It may be noticed that the average Nusselt number increases
with increasing the Prandtl number, with a decreasing gradient,
which is typical for intermediate Prandtl numbers, as clearly re-
flected by the isotherm patterns depicted in Fig. 19 for Ra = 104,
b/a = 0.5, u = 45�, and Pr = 0.7, 7, 70, and 700. It is apparent that,
as the Prandtl number is increased, the increased viscosity effect
brings to an increase of the temperature gradients at the cylinder
surface, and to a contraction of the rear stagnation region where
the buoyant plume is rooted.

In addition, it may be seen that the distributions of the average
Nusselt number for liquids maintain the same trends of those al-
ready derived for air, that is, once Ra and u are assigned, the Nu-
distributions corresponding to different Prandtl numbers are paral-
lel to one another. This means that at any Rayleigh number and
inclination of the elliptic cross-section with respect to gravity,
the optimum axis ratio remains substantially unchanged with Pr,
i.e., remains the same as that derived for Pr = 0.7. In particular,
the critical orientation angle u* and (b/a)opt at such critical angle
u* maintain the same values as those previously obtained for air,
i.e., nearly 67.5� and 0.33, respectively.

4.3. Correlations for the optimum axis ratio

According to what has been said above, the optimum axis ratio
(b/a)opt is a function of only Ra and u, being practically indepen-
dent of Pr. The best-fit of all the values obtained for (b/a)opt is given
by the following semi-empirical correlations, as shown in Fig. 20:



Fig. 12. Isotherm contour plots for Pr = 0.7, b/a = 0.5, u = 0–90�, and Ra = 102to 106.
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(a) for u < u* ffi 67.5�, 10 < Ra 6 107 and 0.7 6 Pr 6 700

ðb=aÞopt ¼max½0:05;w1ðRa;uÞ� ð11Þ

where w1(Ra,u) is given by:

w1ðRa;uÞ¼0:321
n
½1�0:24Ra0:235 sinðu��uÞ�5þ0:014

�expð�0:0001RaÞ
o0:2
ðuandu� inradiansÞ ð12Þ

with a 5.4% standard deviation of error and a ±9.6% range of
error with a 90% level of confidence;

(b) for u P u* ffi 67.5�, 10 < Ra 6 107 and 0.7 6 Pr 6 700

ðb=aÞopt ¼min½w2ðRa;uÞ;0:98� ð13Þ

where w2(Ra,u) is given by:

w2ðRa;uÞ¼0:1þ0:066lnðRaÞ

�½sinðu�u�Þ�0:187 ðu and u� in radiansÞ ð14Þ
with a 5.5% standard deviation of error and a ±8.2% range of
error with a 90% level of confidence.

Note that in Eqs. (12) and (14) the orientation angles are ex-
pressed in radians.
4.4. Heat transfer correlations

The whole set of numerical results obtained for the average
Nusselt number Nu may be correlated to the Rayleigh number,
Ra, the axis ratio, b/a, the orientation angle of the elliptic cross-sec-
tion, u, and the Prandtl number, Pr, by the following binomial cor-
relating equation, as shown in Fig. 21:
Nu ¼0:66þ 0:535 1þ f1 þ ½ðb=aÞ � 1�f2f g

� Ra1=4

½1þ ð0:49=PrÞ9=16�4=9 ð15Þ



Fig. 13. Isotherm contour plots for Pr = 0.7, Ra = 104, u = 0–90�, and b/a = 0.2–0.8.

Fig. 14. Distributions of Nu90/Nu0 vs. Ra for Pr = 0.7 and different values of b/a. Fig. 15. Distributions of (b/a)opt vs. u for Pr = 0.7 and different values of Ra.
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Fig. 16. Distributions of Nu vs. Ra for b/a = 0.5, u = 45� and different values of Pr.

Fig. 17. Distributions of Nu vs. b/a for Ra = 104, u = 15� and different values of Pr.

Fig. 18. Distributions of Nu vs. b/a for Ra = 104, u = 75� and different values of Pr.
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for 106 Ra6 107, 0.056 b/a6 0.98, 0�6 u6 90�, and 0.76 Pr6 700,
where f1 and f2 are given by:

(a) for u < u* ffi 67.5� and Ra 6 104

f1 ¼ �0:15 exp½�8:1ðb=aÞ� ð16Þ

f2 ¼ 0:051ðsin uÞ logðRaÞ � 0:43 ðu in radiansÞ ð17Þ

with a 1.6% standard deviation of error and a ±3.4% range of
error with a 95% level of confidence;

(b) for u < u* ffi 67.5� and Ra > 104

f1 ¼ �0:048 exp½�2:2ðb=aÞ� ð18Þ

f2 ¼ 0:034ðsin uÞ2 logðRaÞ � 0:31 ðu in radiansÞ ð19Þ
Fig. 19. Isotherm contour plots for Ra = 10
with a 1.6% standard deviation of error and a ±2.9% range of
error with a 95% level of confidence;

(c) for u P u* ffi 67.5� and Ra 6 104

f1 ¼ 0:073 Ra½sinðu�u�Þ�3:2
n o

lnðb=aÞ ðu and u� in radiansÞ

ð20Þ

f2 ¼ 0:044ðsin uÞ7 logðRaÞ � 0:38 ðu in radiansÞ ð21Þ

with a 1.9% standard deviation of error and a ±3.3% range of
error with a 95% level of confidence;

(d) for u P u* ffi 67.5� and Ra > 104

f1 ¼ 0:063 Ra½sinðu�u�Þ�3:3
n o

lnðb=aÞ ðu and u� in radiansÞ

ð22Þ

f2 ¼ 0:040ðsinuÞ7 logðRaÞ � 0:30ðu in radiansÞ ð23Þ

with a 2.1% standard deviation of error and a ±3.9% range of
error with a 95% level of confidence.

Note that in Eqs. (17) and (19)–(23) the orientation angles are
expressed in radians.

5. Conclusions

Steady laminar free convection from horizontal elliptic cylin-
ders set in unbounded space has been studied numerically through
a specifically developed computer-code based on the SIMPLE-C
algorithm, under the assumption of uniform surface temperature.
Simulations have been performed for ratios between the minor
and major axes of the elliptic cross-section of the cylinder in the
4, b/a = 0.5, u = 45�, and Pr = 0.7–700.



Fig. 20. Comparison between Eqs. (11)–(14) and the numerical results.
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range between 0.05 and 0.98, inclination angles of the major axis of
the elliptic cross-section with respect to gravity in the range be-
tween 0� and 90�, Rayleigh numbers based on the major axis of
the elliptic cross-section in the range between 10 and 107, and Pra-
ndtl numbers in the range between 0.7 and 700. New dimension-
less correlating equations with good standard deviations of error
Fig. 21. Comparison between Eqs. (16
and sufficiently narrow ranges of error for quite acceptable levels
of confidence, have been developed for the average Nusselt num-
ber and the optimum axis ratio for maximum heat transfer from
the cylinder surface to the undisturbed surrounding fluid reservoir.

The main results obtained in the present study may be summa-
rized as follows:

(a) The average Nusselt number increases with increasing the
Rayleigh number, with a slope which decreases or increases
with increasing the axis ratio, depending on whether the
tube configuration is either slender or blunt.

(b) The average Nusselt number increases with increasing the
Prandtl number, with a decreasing gradient.

(c) The average Nusselt number decreases with increasing the
orientation angle of the elliptic cross-section of the cylinder,
with a slope which increases as the Rayleigh number
increases and the axis ratio decreases.

(d) In most cases, the average Nusselt number has a peak at an
optimum axis ratio which increases or decreases with
increasing the Rayleigh number, depending on whether the
orientation angle of the tube is above or below a critical
value of approximately 67.5�, independently of both the
Rayleigh and Prandtl numbers, at which the optimum axis
ratio is nearly 0.33, independently of both the Rayleigh
and Prandtl numbers.
)–(23) and the numerical results.



1364 M. Corcione, E. Habib / International Journal of Heat and Mass Transfer 52 (2009) 1353–1364
(e) At any Rayleigh number and orientation of the elliptic cross-
section with respect to gravity, the optimum axis ratio for
maximum heat transfer from the cylinder surface to the
undisturbed fluid reservoir is practically independent of
the Prandtl number.
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